Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Vaccines (Basel) ; 10(12)2022 Nov 29.
Article in English | MEDLINE | ID: covidwho-2127265

ABSTRACT

The nucleocapsid (N) protein contributes to key steps of the SARS-CoV-2 life cycle, including packaging of the virus genome and modulating interactions with cytoplasmic components. Expanding knowledge of the N protein acting on cellular proteins and interfering with innate immunity is critical for studying the host antiviral strategy. In the study on SARS-CoV-2 infecting human bronchial epithelial cell line s1(16HBE), we identified that the N protein can promote the interaction between GTPase-activating protein SH3 domain-binding protein 2 (G3BP2) and tripartite motif containing 25 (TRIM25), which is involved in formation of the TRIM25-G3BP2-N protein interactome. Our findings suggest that the N protein is enrolled in the inhibition of type I interferon production in the process of infection. Meanwhile, upgraded binding of G3BP2 and TRIM25 interferes with the RIG-I-like receptor signaling pathway, which may contribute to SARS-CoV-2 escaping from cellular innate immune surveillance. The N protein plays a critical role in SARS-CoV-2 replication. Our study suggests that the N protein and its interacting cellular components has potential for use in antiviral therapy, and adding N protein into the vaccine as an antigen may be a good strategy to improve the effectiveness and safety of the vaccine. Its interference with innate immunity should be strongly considered as a target for SARS-CoV-2 infection control and vaccine design.

2.
iScience ; 24(12): 103426, 2021 Dec 17.
Article in English | MEDLINE | ID: covidwho-1509907

ABSTRACT

Glycosylation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein mediates viral entry and immune escape. While glycan site is determined by viral genetic code, glycosylation is completely dependent on host cell post-translational modification. Here, by producing SARS-CoV-2 virions from various host cell lines, viruses of different origins with diverse spike protein glycan patterns were revealed. Binding affinities to C-type lectin receptors (CLRs) DC&L-SIGN differed in the different glycan pattern virions. Although none of the CLRs supported viral productive infection, viral trans&cis-infection mediated by the CLRs were substantially changed among the different virions. Specifically, trans&cis-infection of virions with a high-mannose structure (Man5GlcNAc2) at the N1098 glycan site of the spike postfusion trimer were markedly enhanced. Considering L-SIGN co-expression with ACE2 on respiratory tract cells, our work underlines viral epigenetic glycosylation in authentic viral infection and highlights the attachment co-receptor role of DC&L-SIGN in SARS-CoV-2 infection and prevention.

4.
Emerg Microbes Infect ; 10(1): 1156-1168, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1249264

ABSTRACT

ABSTRACTThe risk of secondary infection with SARS-CoV-2 and influenza A virus is becoming a practical problem that must be addressed as the flu season merges with the COVID-19 pandemic. As SARS-CoV-2 and influenza A virus have been found in patients, understanding the in vivo characteristics of the secondary infection between these two viruses is a high priority. Here, hACE2 transgenic mice were challenged with the H1N1 virus at a nonlethal dose during the convalescent stage on 7 and 14 days post SARS-CoV-2 infection, and importantly, subsequent H1N1 infection showed enhanced viral shedding and virus tissue distribution. Histopathological observation revealed an extensive pathological change in the lungs related to H1N1 infection in mice recovered from SARS-CoV-2 infection, with severe inflammation infiltration and bronchiole disruption. Moreover, upon H1N1 exposure on 7 and 14 dpi of SARS-CoV-2 infection, the lymphocyte population activated at a lower level with T cell suppressed in both PBMC and lung. These findings will be valuable for evaluating antiviral therapeutics and vaccines as well as guiding public health work.


Subject(s)
Acute Lung Injury/pathology , Angiotensin-Converting Enzyme 2/genetics , COVID-19/pathology , Orthomyxoviridae Infections/pathology , Acute Lung Injury/virology , Animals , COVID-19/therapy , Coinfection/pathology , Coinfection/virology , Cytokines/blood , Disease Models, Animal , Female , Humans , Influenza A Virus, H1N1 Subtype/isolation & purification , Lung/pathology , Lymphocyte Count , Lymphocytes/immunology , Mice , Mice, Transgenic , Orthomyxoviridae Infections/therapy , SARS-CoV-2/isolation & purification , Viral Load , Virus Replication/physiology , Virus Shedding/physiology
5.
Bioconjug Chem ; 32(5): 1034-1046, 2021 05 19.
Article in English | MEDLINE | ID: covidwho-1217668

ABSTRACT

SARS-CoV-2 caused the COVID-19 pandemic that lasted for more than a year. Globally, there is an urgent need to use safe and effective vaccines for immunization to achieve comprehensive protection against SARS-CoV-2 infection. Focusing on developing a rapid vaccine platform with significant immunogenicity as well as broad and high protection efficiency, we designed a SARS-CoV-2 spike protein receptor-binding domain (RBD) displayed on self-assembled ferritin nanoparticles. In a 293i cells eukaryotic expression system, this candidate vaccine was prepared and purified. After rhesus monkeys are immunized with 20 µg of RBD-ferritin nanoparticles three times, the vaccine can elicit specific humoral immunity and T cell immune response, and the neutralizing antibodies can cross-neutralize four SARS-CoV-2 strains from different sources. In the challenge protection test, after nasal infection with 2 × 105 CCID50 SARS-CoV-2 virus, compared with unimmunized control animals, virus replication in the vaccine-immunized rhesus monkeys was significantly inhibited, and respiratory pathology observations also showed only slight pathological damage. These analyses will benefit the immunization program of the RBD-ferritin nanoparticle vaccine in the clinical trial design and the platform construction to present a specific antigen domain in the self-assembling nanoparticle in a short time to harvest stable, safe, and effective vaccine candidates for new SARS-CoV-2 isolates.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Nanoparticles/chemistry , Spike Glycoprotein, Coronavirus/metabolism , T-Lymphocytes/immunology , Animals , Antibodies, Neutralizing/immunology , Binding Sites , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Ferritins/chemistry , Ferritins/metabolism , Immunity, Humoral , Macaca mulatta , Male , Nanoparticles/metabolism , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/metabolism , Ultracentrifugation
6.
Zool Res ; 41(6): 621-631, 2020 11 18.
Article in English | MEDLINE | ID: covidwho-982982

ABSTRACT

Understanding the pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and clarifying antiviral immunity in hosts are critical aspects for the development of vaccines and antivirals. Mice are frequently used to generate animal models of infectious diseases due to their convenience and ability to undergo genetic manipulation. However, normal adult mice are not susceptible to SARS-CoV-2. Here, we developed a viral receptor (human angiotensin-converting enzyme 2, hACE2) pulmonary transfection mouse model to establish SARS-CoV-2 infection rapidly in the mouse lung. Based on the model, the virus successfully infected the mouse lung 2 days after transfection. Viral RNA/protein, innate immune cell infiltration, inflammatory cytokine expression, and pathological changes in the infected lungs were observed after infection. Further studies indicated that neutrophils were the first and most abundant leukocytes to infiltrate the infected lungs after viral infection. In addition, using infected CXCL5-knockout mice, chemokine CXCL5 was responsible for neutrophil recruitment. CXCL5 knockout decreased lung inflammation without diminishing viral clearance, suggesting a potential target for controlling pneumonia.


Subject(s)
Betacoronavirus/immunology , Chemokine CXCL5/immunology , Coronavirus Infections/immunology , Immunity, Innate/immunology , Neutrophils/immunology , Peptidyl-Dipeptidase A/immunology , Pneumonia, Viral/immunology , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/genetics , Betacoronavirus/physiology , COVID-19 , Cell Line , Chemokine CXCL5/genetics , Chemokine CXCL5/metabolism , Coronavirus Infections/genetics , Coronavirus Infections/virology , Cytokines/immunology , Cytokines/metabolism , Disease Models, Animal , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Neutrophils/metabolism , Neutrophils/virology , Pandemics , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/genetics , Pneumonia, Viral/virology , SARS-CoV-2
7.
PLoS Pathog ; 16(11): e1008949, 2020 11.
Article in English | MEDLINE | ID: covidwho-922716

ABSTRACT

The COVID-19 has emerged as an epidemic, causing severe pneumonia with a high infection rate globally. To better understand the pathogenesis caused by SARS-CoV-2, we developed a rhesus macaque model to mimic natural infection via the nasal route, resulting in the SARS-CoV-2 virus shedding in the nose and stool up to 27 days. Importantly, we observed the pathological progression of marked interstitial pneumonia in the infected animals on 5-7 dpi, with virus dissemination widely occurring in the lower respiratory tract and lymph nodes, and viral RNA was consistently detected from 5 to 21 dpi. During the infection period, the kinetics response of T cells was revealed to contribute to COVID-19 progression. Our findings implied that the antiviral response of T cells was suppressed after 3 days post infection, which might be related to increases in the Treg cell population in PBMCs. Moreover, two waves of the enhanced production of cytokines (TGF-α, IL-4, IL-6, GM-CSF, IL-10, IL-15, IL-1ß), chemokines (MCP-1/CCL2, IL-8/CXCL8, and MIP-1ß/CCL4) were detected in lung tissue. Our data collected from this model suggested that T cell response and cytokine/chemokine changes in lung should be considered as evaluation parameters for COVID-19 treatment and vaccine development, besides of observation of virus shedding and pathological analysis.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/pathology , Pneumonia, Viral/pathology , Animals , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Cytokines/immunology , Disease Models, Animal , Lung/immunology , Lung/pathology , Macaca mulatta , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Viral Load/methods , Virulence , Virus Shedding , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL